mirror of
https://github.com/HbmMods/Hbm-s-Nuclear-Tech-GIT.git
synced 2026-01-25 10:32:49 +00:00
Perf: better caching
This commit is contained in:
parent
d65cc18dd8
commit
7dab92f3b2
@ -16,12 +16,15 @@ import net.minecraft.world.chunk.Chunk;
|
||||
import net.minecraft.world.chunk.storage.ExtendedBlockStorage;
|
||||
import org.apache.logging.log4j.Level;
|
||||
|
||||
import java.util.*;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Comparator;
|
||||
import java.util.Iterator;
|
||||
import java.util.List;
|
||||
import java.util.concurrent.*;
|
||||
import java.util.concurrent.atomic.DoubleAdder;
|
||||
|
||||
/**
|
||||
* Threaded DDA raytracer for the nuke explosion.
|
||||
* Threaded DDA raytracer for mk5 explosion.
|
||||
*
|
||||
* @author mlbv
|
||||
*/
|
||||
@ -30,6 +33,8 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
private static final int WORLD_HEIGHT = 256;
|
||||
private static final int BITSET_SIZE = 16 * WORLD_HEIGHT * 16;
|
||||
private static final int SUBCHUNK_PER_CHUNK = WORLD_HEIGHT >> 4;
|
||||
private static final float NUKE_RESISTANCE_CUTOFF = 2_000_000F;
|
||||
private static final float INITIAL_ENERGY_FACTOR = 0.3F;
|
||||
|
||||
protected final World world;
|
||||
private final double explosionX, explosionY, explosionZ;
|
||||
@ -37,19 +42,19 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
private final int strength;
|
||||
private final int radius;
|
||||
|
||||
private volatile List<Vec3> directions;
|
||||
private final CompletableFuture<List<Vec3>> directionsFuture;
|
||||
private final ConcurrentMap<ChunkCoordIntPair, ConcurrentBitSet> destructionMap;
|
||||
private final ConcurrentMap<ChunkCoordIntPair, ConcurrentMap<Integer, DoubleAdder>> damageMap;
|
||||
|
||||
private final ConcurrentMap<SubChunkKey, SubChunkSnapshot> snapshots;
|
||||
|
||||
private final ConcurrentMap<SubChunkKey, ConcurrentLinkedQueue<RayTask>> waitingRoom;
|
||||
private final BlockingQueue<RayTask> rayQueue;
|
||||
private final BlockingQueue<SubChunkKey> cacheQueue;
|
||||
private final ExecutorService pool;
|
||||
private final CountDownLatch latch;
|
||||
private final Thread latchWatcherThread;
|
||||
private final List<ChunkCoordIntPair> orderedChunks;
|
||||
private final BlockingQueue<SubChunkKey> highPriorityReactiveQueue; // cache queue for rays
|
||||
private final Iterator<SubChunkKey> lowPriorityProactiveIterator;
|
||||
private volatile List<Vec3> directions;
|
||||
private volatile boolean collectFinished = false;
|
||||
private volatile boolean consolidationFinished = false;
|
||||
private volatile boolean destroyFinished = false;
|
||||
@ -68,26 +73,24 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
this.radius = radius;
|
||||
|
||||
int rayCount = Math.max(0, (int) (2.5 * Math.PI * strength * strength));
|
||||
|
||||
this.latch = new CountDownLatch(rayCount);
|
||||
List<ChunkCoordIntPair> affectedChunks = this.collectChunkInRadius();
|
||||
int initialCapacity = affectedChunks.size();
|
||||
List<SubChunkKey> sortedSubChunks = getAllSubChunks();
|
||||
this.lowPriorityProactiveIterator = sortedSubChunks.iterator();
|
||||
this.highPriorityReactiveQueue = new LinkedBlockingQueue<>();
|
||||
|
||||
this.destructionMap = new ConcurrentHashMap<>(initialCapacity);
|
||||
this.damageMap = new ConcurrentHashMap<>(initialCapacity);
|
||||
if (BombConfig.explosionAlgorithm == 2) {
|
||||
final int innerMapCapacity = 256;
|
||||
for (ChunkCoordIntPair coord : affectedChunks) {
|
||||
this.damageMap.put(coord, new ConcurrentHashMap<>(innerMapCapacity));
|
||||
}
|
||||
}
|
||||
this.snapshots = new ConcurrentHashMap<>(initialCapacity * SUBCHUNK_PER_CHUNK);
|
||||
int initialChunkCapacity = (int) sortedSubChunks.stream().map(SubChunkKey::getPos).distinct().count();
|
||||
|
||||
this.destructionMap = new ConcurrentHashMap<>(initialChunkCapacity);
|
||||
this.damageMap = new ConcurrentHashMap<>(initialChunkCapacity);
|
||||
|
||||
int subChunkCount = sortedSubChunks.size();
|
||||
this.snapshots = new ConcurrentHashMap<>(subChunkCount);
|
||||
this.waitingRoom = new ConcurrentHashMap<>(subChunkCount);
|
||||
this.orderedChunks = new ArrayList<>();
|
||||
|
||||
List<RayTask> initialRayTasks = new ArrayList<>(rayCount);
|
||||
for (int i = 0; i < rayCount; i++) initialRayTasks.add(new RayTask(i));
|
||||
this.rayQueue = new LinkedBlockingQueue<>(initialRayTasks);
|
||||
this.cacheQueue = new LinkedBlockingQueue<>();
|
||||
|
||||
int workers = Math.max(1, Runtime.getRuntime().availableProcessors() - 1);
|
||||
this.pool = Executors.newWorkStealingPool(workers);
|
||||
@ -102,11 +105,8 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
Thread.currentThread().interrupt();
|
||||
} finally {
|
||||
collectFinished = true;
|
||||
if (BombConfig.explosionAlgorithm == 2) {
|
||||
pool.submit(this::runConsolidation);
|
||||
} else {
|
||||
consolidationFinished = true;
|
||||
}
|
||||
if (BombConfig.explosionAlgorithm == 2) pool.submit(this::runConsolidation);
|
||||
else consolidationFinished = true;
|
||||
}
|
||||
}, "ExplosionNuke-LatchWatcher-" + System.nanoTime());
|
||||
this.latchWatcherThread.setDaemon(true);
|
||||
@ -116,25 +116,70 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
private static float getNukeResistance(Block b) {
|
||||
if (b.getMaterial().isLiquid()) return 0.1F;
|
||||
if (b == Blocks.sandstone) return Blocks.stone.getExplosionResistance(null);
|
||||
if (b == Blocks.obsidian) return Blocks.stone.getExplosionResistance(null) * 3;
|
||||
if (b == Blocks.obsidian) return Blocks.stone.getExplosionResistance(null) * 3.0F;
|
||||
return b.getExplosionResistance(null);
|
||||
}
|
||||
|
||||
private List<SubChunkKey> getAllSubChunks() {
|
||||
List<SubChunkKey> keys = new ArrayList<>();
|
||||
int cr = (radius + 15) >> 4;
|
||||
int minCX = (originX >> 4) - cr;
|
||||
int maxCX = (originX >> 4) + cr;
|
||||
int minCZ = (originZ >> 4) - cr;
|
||||
int maxCZ = (originZ >> 4) + cr;
|
||||
int minSubY = Math.max(0, (originY - radius) >> 4);
|
||||
int maxSubY = Math.min(SUBCHUNK_PER_CHUNK - 1, (originY + radius) >> 4);
|
||||
int originSubY = originY >> 4;
|
||||
|
||||
for (int cx = minCX; cx <= maxCX; cx++) {
|
||||
for (int cz = minCZ; cz <= maxCZ; cz++) {
|
||||
for (int subY = minSubY; subY <= maxSubY; subY++) {
|
||||
int chunkCenterX = (cx << 4) + 8;
|
||||
int chunkCenterY = (subY << 4) + 8;
|
||||
int chunkCenterZ = (cz << 4) + 8;
|
||||
double dx = chunkCenterX - explosionX;
|
||||
double dy = chunkCenterY - explosionY;
|
||||
double dz = chunkCenterZ - explosionZ;
|
||||
if (dx * dx + dy * dy + dz * dz <= (radius + 14) * (radius + 14)) { // +14 for margin of error
|
||||
keys.add(new SubChunkKey(cx, cz, subY));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
keys.sort(Comparator.comparingInt(key -> {
|
||||
int distCX = key.getPos().chunkXPos - (originX >> 4);
|
||||
int distCZ = key.getPos().chunkZPos - (originZ >> 4);
|
||||
int distSubY = key.getSubY() - originSubY;
|
||||
return distCX * distCX + distCZ * distCZ + distSubY * distSubY;
|
||||
}));
|
||||
return keys;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void cacheChunksTick(int timeBudgetMs) {
|
||||
if (collectFinished || this.cacheQueue == null) return;
|
||||
|
||||
if (collectFinished) return;
|
||||
final long deadline = System.nanoTime() + (timeBudgetMs * 1_000_000L);
|
||||
while (System.nanoTime() < deadline) {
|
||||
SubChunkKey ck = cacheQueue.poll();
|
||||
SubChunkKey ck = highPriorityReactiveQueue.poll();
|
||||
if (ck == null) break;
|
||||
snapshots.computeIfAbsent(ck, k -> SubChunkSnapshot.getSnapshot(world, k, BombConfig.chunkloading));
|
||||
processCacheKey(ck);
|
||||
}
|
||||
while (System.nanoTime() < deadline && lowPriorityProactiveIterator.hasNext()) {
|
||||
SubChunkKey ck = lowPriorityProactiveIterator.next();
|
||||
processCacheKey(ck);
|
||||
}
|
||||
}
|
||||
|
||||
private void processCacheKey(SubChunkKey ck) {
|
||||
if (snapshots.containsKey(ck)) return;
|
||||
snapshots.put(ck, SubChunkSnapshot.getSnapshot(world, ck, BombConfig.chunkloading));
|
||||
ConcurrentLinkedQueue<RayTask> waiters = waitingRoom.remove(ck);
|
||||
if (waiters != null) rayQueue.addAll(waiters);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void destructionTick(int timeBudgetMs) {
|
||||
if (!collectFinished || !consolidationFinished || destroyFinished) return; // Added consolidationFinished check
|
||||
if (!collectFinished || !consolidationFinished || destroyFinished) return;
|
||||
|
||||
final long deadline = System.nanoTime() + timeBudgetMs * 1_000_000L;
|
||||
|
||||
@ -198,9 +243,7 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
}
|
||||
if (bs.isEmpty()) {
|
||||
destructionMap.remove(cp);
|
||||
for (int sy = 0; sy < (SUBCHUNK_PER_CHUNK); sy++) {
|
||||
snapshots.remove(new SubChunkKey(cp, sy));
|
||||
}
|
||||
for (int subY = 0; subY < SUBCHUNK_PER_CHUNK; subY++) snapshots.remove(new SubChunkKey(cp, subY));
|
||||
it.remove();
|
||||
}
|
||||
}
|
||||
@ -223,28 +266,18 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
this.destroyFinished = true;
|
||||
|
||||
if (this.rayQueue != null) this.rayQueue.clear();
|
||||
if (this.cacheQueue != null) this.cacheQueue.clear();
|
||||
if (this.waitingRoom != null) this.waitingRoom.clear();
|
||||
|
||||
if (this.latch != null) {
|
||||
while (this.latch.getCount() > 0) {
|
||||
this.latch.countDown();
|
||||
}
|
||||
}
|
||||
if (this.latchWatcherThread != null && this.latchWatcherThread.isAlive()) {
|
||||
this.latchWatcherThread.interrupt();
|
||||
}
|
||||
if (this.latch != null) while (this.latch.getCount() > 0) this.latch.countDown();
|
||||
if (this.latchWatcherThread != null && this.latchWatcherThread.isAlive()) this.latchWatcherThread.interrupt();
|
||||
|
||||
if (this.pool != null && !this.pool.isShutdown()) {
|
||||
this.pool.shutdownNow();
|
||||
try {
|
||||
if (!this.pool.awaitTermination(100, TimeUnit.MILLISECONDS)) {
|
||||
MainRegistry.logger.log(Level.ERROR, "ExplosionNukeRayParallelized thread pool did not terminate promptly on cancel.");
|
||||
}
|
||||
if (!this.pool.awaitTermination(100, TimeUnit.MILLISECONDS)) MainRegistry.logger.log(Level.ERROR, "ExplosionNukeRayParallelized thread pool did not terminate promptly on cancel.");
|
||||
} catch (InterruptedException e) {
|
||||
Thread.currentThread().interrupt();
|
||||
if (!this.pool.isShutdown()) {
|
||||
this.pool.shutdownNow();
|
||||
}
|
||||
if (!this.pool.isShutdown()) this.pool.shutdownNow();
|
||||
}
|
||||
}
|
||||
if (this.destructionMap != null) this.destructionMap.clear();
|
||||
@ -253,27 +286,11 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
if (this.orderedChunks != null) this.orderedChunks.clear();
|
||||
}
|
||||
|
||||
private List<ChunkCoordIntPair> collectChunkInRadius() {
|
||||
int cr = (radius + 15) >> 4;
|
||||
int minCX = (originX >> 4) - cr;
|
||||
int maxCX = (originX >> 4) + cr;
|
||||
int minCZ = (originZ >> 4) - cr;
|
||||
int maxCZ = (originZ >> 4) + cr;
|
||||
|
||||
List<ChunkCoordIntPair> list = new ArrayList<>((maxCX - minCX + 1) * (maxCZ - minCZ + 1));
|
||||
for (int cx = minCX; cx <= maxCX; ++cx) {
|
||||
for (int cz = minCZ; cz <= maxCZ; ++cz) {
|
||||
list.add(new ChunkCoordIntPair(cx, cz));
|
||||
}
|
||||
}
|
||||
return list;
|
||||
}
|
||||
|
||||
private List<Vec3> generateSphereRays(int count) {
|
||||
List<Vec3> list = new ArrayList<>(count);
|
||||
if (count == 0) return list;
|
||||
if (count == 1) {
|
||||
list.add(Vec3.createVectorHelper(1, 0, 0).normalize());
|
||||
list.add(Vec3.createVectorHelper(1, 0, 0));
|
||||
return list;
|
||||
}
|
||||
double phi = Math.PI * (3.0 - Math.sqrt(5.0));
|
||||
@ -287,67 +304,43 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
}
|
||||
|
||||
private void runConsolidation() {
|
||||
Iterator<Map.Entry<ChunkCoordIntPair, ConcurrentMap<Integer, DoubleAdder>>> chunkEntryIterator = damageMap.entrySet().iterator();
|
||||
while (chunkEntryIterator.hasNext()) {
|
||||
Map.Entry<ChunkCoordIntPair, ConcurrentMap<Integer, DoubleAdder>> entry = chunkEntryIterator.next();
|
||||
ChunkCoordIntPair cp = entry.getKey();
|
||||
ConcurrentMap<Integer, DoubleAdder> innerDamageMap = entry.getValue();
|
||||
|
||||
damageMap.forEach((cp, innerDamageMap) -> {
|
||||
if (innerDamageMap.isEmpty()) {
|
||||
chunkEntryIterator.remove();
|
||||
continue;
|
||||
damageMap.remove(cp);
|
||||
return;
|
||||
}
|
||||
|
||||
ConcurrentBitSet chunkDestructionBitSet = destructionMap.computeIfAbsent(cp, k -> new ConcurrentBitSet(BITSET_SIZE));
|
||||
|
||||
Iterator<Map.Entry<Integer, DoubleAdder>> damageEntryIterator = innerDamageMap.entrySet().iterator();
|
||||
while (damageEntryIterator.hasNext()) {
|
||||
Map.Entry<Integer, DoubleAdder> damageEntry = damageEntryIterator.next();
|
||||
int bitIndex = damageEntry.getKey();
|
||||
|
||||
float accumulatedDamage = (float) damageEntry.getValue().sum();
|
||||
|
||||
innerDamageMap.forEach((bitIndex, accumulatedDamageAdder) -> {
|
||||
float accumulatedDamage = (float) accumulatedDamageAdder.sum();
|
||||
if (accumulatedDamage <= 0.0f) {
|
||||
damageEntryIterator.remove();
|
||||
continue;
|
||||
innerDamageMap.remove(bitIndex);
|
||||
return;
|
||||
}
|
||||
|
||||
int yGlobal = WORLD_HEIGHT - 1 - (bitIndex >>> 8);
|
||||
int subY = yGlobal >> 4;
|
||||
|
||||
if (subY < 0) {
|
||||
damageEntryIterator.remove();
|
||||
continue;
|
||||
innerDamageMap.remove(bitIndex);
|
||||
return;
|
||||
}
|
||||
|
||||
SubChunkKey snapshotKey = new SubChunkKey(cp, subY);
|
||||
SubChunkSnapshot snap = snapshots.get(snapshotKey);
|
||||
Block originalBlock;
|
||||
|
||||
if (snap == null || snap == SubChunkSnapshot.EMPTY) {
|
||||
damageEntryIterator.remove();
|
||||
continue;
|
||||
} else {
|
||||
int xLocal = (bitIndex >>> 4) & 0xF;
|
||||
int zLocal = bitIndex & 0xF;
|
||||
originalBlock = snap.getBlock(xLocal, yGlobal & 0xF, zLocal);
|
||||
if (originalBlock == Blocks.air) {
|
||||
damageEntryIterator.remove();
|
||||
continue;
|
||||
}
|
||||
innerDamageMap.remove(bitIndex);
|
||||
return;
|
||||
}
|
||||
int xLocal = (bitIndex >>> 4) & 0xF;
|
||||
int zLocal = bitIndex & 0xF;
|
||||
Block originalBlock = snap.getBlock(xLocal, yGlobal & 0xF, zLocal);
|
||||
if (originalBlock == Blocks.air) {
|
||||
innerDamageMap.remove(bitIndex);
|
||||
return;
|
||||
}
|
||||
|
||||
float resistance = getNukeResistance(originalBlock);
|
||||
if (accumulatedDamage >= resistance) {
|
||||
chunkDestructionBitSet.set(bitIndex);
|
||||
damageEntryIterator.remove();
|
||||
}
|
||||
}
|
||||
|
||||
if (innerDamageMap.isEmpty()) {
|
||||
chunkEntryIterator.remove();
|
||||
}
|
||||
}
|
||||
if (accumulatedDamage >= resistance) chunkDestructionBitSet.set(bitIndex);
|
||||
innerDamageMap.remove(bitIndex);
|
||||
});
|
||||
if (innerDamageMap.isEmpty()) damageMap.remove(cp);
|
||||
});
|
||||
damageMap.clear();
|
||||
consolidationFinished = true;
|
||||
}
|
||||
@ -356,14 +349,9 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
@Override
|
||||
public void run() {
|
||||
try {
|
||||
while (true) {
|
||||
if (collectFinished && rayQueue.isEmpty()) break;
|
||||
while (!collectFinished && !Thread.currentThread().isInterrupted()) {
|
||||
RayTask task = rayQueue.poll(100, TimeUnit.MILLISECONDS);
|
||||
if (task == null) {
|
||||
if (collectFinished && rayQueue.isEmpty()) break;
|
||||
continue;
|
||||
}
|
||||
task.trace();
|
||||
if (task != null) task.trace();
|
||||
}
|
||||
} catch (InterruptedException e) {
|
||||
Thread.currentThread().interrupt();
|
||||
@ -372,6 +360,10 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
}
|
||||
|
||||
private class RayTask {
|
||||
private static final double RAY_DIRECTION_EPSILON = 1e-6;
|
||||
private static final double PROCESSING_EPSILON = 1e-9;
|
||||
private static final float MIN_EFFECTIVE_DIST_FOR_ENERGY_CALC = 0.01f;
|
||||
|
||||
final int dirIndex;
|
||||
double px, py, pz;
|
||||
int x, y, z;
|
||||
@ -381,9 +373,8 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
boolean initialised = false;
|
||||
double currentRayPosition;
|
||||
|
||||
private static final double RAY_DIRECTION_EPSILON = 1e-6;
|
||||
private static final double PROCESSING_EPSILON = 1e-9;
|
||||
private static final float MIN_EFFECTIVE_DIST_FOR_ENERGY_CALC = 0.01f;
|
||||
private int lastCX = Integer.MIN_VALUE, lastCZ = Integer.MIN_VALUE, lastSubY = Integer.MIN_VALUE;
|
||||
private SubChunkKey currentSubChunkKey = null;
|
||||
|
||||
RayTask(int dirIdx) {
|
||||
this.dirIndex = dirIdx;
|
||||
@ -392,9 +383,7 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
void init() {
|
||||
if (directions == null) directions = directionsFuture.join();
|
||||
Vec3 dir = directions.get(this.dirIndex);
|
||||
// This scales the crater. Higher = bigger.
|
||||
// Currently the crater is a little bit bigger than the original implementation
|
||||
this.energy = strength * 0.3F;
|
||||
this.energy = strength * INITIAL_ENERGY_FACTOR;
|
||||
this.px = explosionX;
|
||||
this.py = explosionY;
|
||||
this.pz = explosionZ;
|
||||
@ -410,20 +399,17 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
double absDirX = Math.abs(dirX);
|
||||
this.stepX = (absDirX < RAY_DIRECTION_EPSILON) ? 0 : (dirX > 0 ? 1 : -1);
|
||||
this.tDeltaX = (stepX == 0) ? Double.POSITIVE_INFINITY : 1.0 / absDirX;
|
||||
this.tMaxX = (stepX == 0) ? Double.POSITIVE_INFINITY :
|
||||
((stepX > 0 ? (this.x + 1 - this.px) : (this.px - this.x)) * this.tDeltaX);
|
||||
this.tMaxX = (stepX == 0) ? Double.POSITIVE_INFINITY : ((stepX > 0 ? (this.x + 1 - this.px) : (this.px - this.x)) * this.tDeltaX);
|
||||
|
||||
double absDirY = Math.abs(dirY);
|
||||
this.stepY = (absDirY < RAY_DIRECTION_EPSILON) ? 0 : (dirY > 0 ? 1 : -1);
|
||||
this.tDeltaY = (stepY == 0) ? Double.POSITIVE_INFINITY : 1.0 / absDirY;
|
||||
this.tMaxY = (stepY == 0) ? Double.POSITIVE_INFINITY :
|
||||
((stepY > 0 ? (this.y + 1 - this.py) : (this.py - this.y)) * this.tDeltaY);
|
||||
this.tMaxY = (stepY == 0) ? Double.POSITIVE_INFINITY : ((stepY > 0 ? (this.y + 1 - this.py) : (this.py - this.y)) * this.tDeltaY);
|
||||
|
||||
double absDirZ = Math.abs(dirZ);
|
||||
this.stepZ = (absDirZ < RAY_DIRECTION_EPSILON) ? 0 : (dirZ > 0 ? 1 : -1);
|
||||
this.tDeltaZ = (stepZ == 0) ? Double.POSITIVE_INFINITY : 1.0 / absDirZ;
|
||||
this.tMaxZ = (stepZ == 0) ? Double.POSITIVE_INFINITY :
|
||||
((stepZ > 0 ? (this.z + 1 - this.pz) : (this.pz - this.z)) * this.tDeltaZ);
|
||||
this.tMaxZ = (stepZ == 0) ? Double.POSITIVE_INFINITY : ((stepZ > 0 ? (this.z + 1 - this.pz) : (this.pz - this.z)) * this.tDeltaZ);
|
||||
|
||||
this.initialised = true;
|
||||
}
|
||||
@ -436,15 +422,28 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
}
|
||||
|
||||
while (energy > 0) {
|
||||
if (y < 0 || y >= WORLD_HEIGHT) break;
|
||||
if (y < 0 || y >= WORLD_HEIGHT || Thread.currentThread().isInterrupted()) break;
|
||||
if (currentRayPosition >= radius - PROCESSING_EPSILON) break;
|
||||
|
||||
SubChunkKey ck = new SubChunkKey(x >> 4, z >> 4, y >> 4);
|
||||
SubChunkSnapshot snap = snapshots.get(ck);
|
||||
int cx = x >> 4;
|
||||
int cz = z >> 4;
|
||||
int subY = y >> 4;
|
||||
if (cx != lastCX || cz != lastCZ || subY != lastSubY) {
|
||||
currentSubChunkKey = new SubChunkKey(cx, cz, subY);
|
||||
lastCX = cx;
|
||||
lastCZ = cz;
|
||||
lastSubY = subY;
|
||||
}
|
||||
|
||||
SubChunkSnapshot snap = snapshots.get(currentSubChunkKey);
|
||||
if (snap == null) {
|
||||
cacheQueue.offer(ck);
|
||||
rayQueue.offer(this);
|
||||
final boolean[] amFirst = {false};
|
||||
ConcurrentLinkedQueue<RayTask> waiters = waitingRoom.computeIfAbsent(currentSubChunkKey, k -> {
|
||||
amFirst[0] = true;
|
||||
return new ConcurrentLinkedQueue<>();
|
||||
});
|
||||
if (amFirst[0]) highPriorityReactiveQueue.add(currentSubChunkKey);
|
||||
waiters.add(this);
|
||||
return;
|
||||
}
|
||||
double t_exit_voxel = Math.min(tMaxX, Math.min(tMaxY, tMaxZ));
|
||||
@ -455,15 +454,13 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
if (this.currentRayPosition + segmentLenInVoxel > radius - PROCESSING_EPSILON) {
|
||||
segmentLenForProcessing = Math.max(0.0, radius - this.currentRayPosition);
|
||||
stopAfterThisSegment = true;
|
||||
} else {
|
||||
segmentLenForProcessing = segmentLenInVoxel;
|
||||
}
|
||||
} else segmentLenForProcessing = segmentLenInVoxel;
|
||||
|
||||
if (snap != SubChunkSnapshot.EMPTY && segmentLenForProcessing > PROCESSING_EPSILON) {
|
||||
Block block = snap.getBlock(x & 0xF, y & 0xF, z & 0xF);
|
||||
if (block != Blocks.air) {
|
||||
float resistance = getNukeResistance(block);
|
||||
if (resistance >= 2_000_000F) { // cutoff
|
||||
if (resistance >= NUKE_RESISTANCE_CUTOFF) {
|
||||
energy = 0;
|
||||
} else {
|
||||
double energyLossFactor = getEnergyLossFactor(resistance);
|
||||
@ -471,27 +468,16 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
energy -= damageDealt;
|
||||
if (damageDealt > 0) {
|
||||
int bitIndex = ((WORLD_HEIGHT - 1 - y) << 8) | ((x & 0xF) << 4) | (z & 0xF);
|
||||
ChunkCoordIntPair chunkPos = currentSubChunkKey.getPos();
|
||||
if (BombConfig.explosionAlgorithm == 2) {
|
||||
ChunkCoordIntPair chunkPos = ck.getPos();
|
||||
ConcurrentMap<Integer, DoubleAdder> chunkDamageMap = damageMap.get(chunkPos);
|
||||
if (chunkDamageMap != null) {
|
||||
chunkDamageMap.computeIfAbsent(bitIndex, k -> new DoubleAdder()).add(damageDealt);
|
||||
}
|
||||
} else {
|
||||
if (energy > 0) {
|
||||
ConcurrentBitSet bs = destructionMap.computeIfAbsent(
|
||||
ck.getPos(),
|
||||
posKey -> new ConcurrentBitSet(BITSET_SIZE)
|
||||
);
|
||||
bs.set(bitIndex);
|
||||
}
|
||||
}
|
||||
damageMap.computeIfAbsent(chunkPos, cp -> new ConcurrentHashMap<>(256)).computeIfAbsent(bitIndex, k -> new DoubleAdder()).add(damageDealt);
|
||||
} else if (energy > 0) destructionMap.computeIfAbsent(chunkPos, posKey -> new ConcurrentBitSet(BITSET_SIZE)).set(bitIndex);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
this.currentRayPosition = t_exit_voxel;
|
||||
if (energy <= 0 || stopAfterThisSegment || this.currentRayPosition >= radius - PROCESSING_EPSILON) break;
|
||||
if (energy <= 0 || stopAfterThisSegment) break;
|
||||
|
||||
if (tMaxX < tMaxY) {
|
||||
if (tMaxX < tMaxZ) {
|
||||
@ -515,15 +501,7 @@ public class ExplosionNukeRayParallelized implements IExplosionRay {
|
||||
}
|
||||
|
||||
private double getEnergyLossFactor(float resistance) {
|
||||
double dxBlockToCenter = (this.x + 0.5) - explosionX;
|
||||
double dyBlockToCenter = (this.y + 0.5) - explosionY;
|
||||
double dzBlockToCenter = (this.z + 0.5) - explosionZ;
|
||||
double distToBlockCenterSq = dxBlockToCenter * dxBlockToCenter +
|
||||
dyBlockToCenter * dyBlockToCenter +
|
||||
dzBlockToCenter * dzBlockToCenter;
|
||||
double distToBlockCenter = Math.sqrt(distToBlockCenterSq);
|
||||
|
||||
double effectiveDist = Math.max(distToBlockCenter, MIN_EFFECTIVE_DIST_FOR_ENERGY_CALC);
|
||||
double effectiveDist = Math.max(this.currentRayPosition, MIN_EFFECTIVE_DIST_FOR_ENERGY_CALC);
|
||||
return (Math.pow(resistance + 1.0, 3.0 * (effectiveDist / radius)) - 1.0);
|
||||
}
|
||||
}
|
||||
|
||||
@ -13,10 +13,6 @@ public class SubChunkKey {
|
||||
private int subY;
|
||||
private int hash;
|
||||
|
||||
public SubChunkKey() {
|
||||
this(0, 0, 0);
|
||||
}
|
||||
|
||||
public SubChunkKey(int cx, int cz, int sy) {
|
||||
this.update(cx, cz, sy);
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user