176 lines
5.7 KiB
Java

package com.hbm.animloader;
import java.nio.FloatBuffer;
import org.lwjgl.opengl.GL11;
import org.lwjgl.util.vector.Matrix4f;
import org.lwjgl.util.vector.Quaternion;
import com.hbm.util.BobMathUtil;
import net.minecraft.client.renderer.GLAllocation;
import net.minecraft.util.Vec3;
/**
* Bob:
* Ported from 1.12.2.
* Mostly gibberish to me, probably written in the ancient egyptian language.
* Any unmarked code comments are probably from Drillgon or code I had to throw out myself.
*
* @author Drillgon200 for the most part
*
*/
public class Transform {
protected static FloatBuffer auxGLMatrix = GLAllocation.createDirectFloatBuffer(16);
Vec3 scale;
Vec3 translation;
Quaternion rotation;
boolean hidden = false;
public Transform(float[] matrix){
scale = getScaleFromMatrix(matrix);
auxGLMatrix.put(matrix);
auxGLMatrix.rewind();
rotation = new Quaternion().setFromMatrix((Matrix4f) new Matrix4f().load(auxGLMatrix));
translation = Vec3.createVectorHelper(matrix[0*4+3], matrix[1*4+3], matrix[2*4+3]);
auxGLMatrix.rewind();
}
private Vec3 getScaleFromMatrix(float[] matrix){
float scaleX = (float) Vec3.createVectorHelper(matrix[0], matrix[1], matrix[2]).lengthVector();
float scaleY = (float) Vec3.createVectorHelper(matrix[4], matrix[5], matrix[6]).lengthVector();
float scaleZ = (float) Vec3.createVectorHelper(matrix[8], matrix[9], matrix[10]).lengthVector();
matrix[0] = matrix[0]/scaleX;
matrix[1] = matrix[1]/scaleX;
matrix[2] = matrix[2]/scaleX;
matrix[4] = matrix[4]/scaleY;
matrix[5] = matrix[5]/scaleY;
matrix[6] = matrix[6]/scaleY;
matrix[8] = matrix[8]/scaleZ;
matrix[9] = matrix[9]/scaleZ;
matrix[10] = matrix[10]/scaleZ;
return Vec3.createVectorHelper(scaleX, scaleY, scaleZ);
}
public void interpolateAndApply(Transform other, float inter){
Vec3 trans = BobMathUtil.interpVec(this.translation, other.translation, inter);
Vec3 scale = BobMathUtil.interpVec(this.scale, other.scale, inter);
Quaternion rot = slerp(rotation, other.rotation, inter);
quatToGlMatrix(auxGLMatrix, rot);
scale(auxGLMatrix, scale);
auxGLMatrix.put(12, (float) trans.xCoord);
auxGLMatrix.put(13, (float) trans.yCoord);
auxGLMatrix.put(14, (float) trans.zCoord);
GL11.glMultMatrix(auxGLMatrix);
}
public static FloatBuffer quatToGlMatrix(FloatBuffer buf, Quaternion q) {
buf.clear();
float xx = q.x * q.x;
float xy = q.x * q.y;
float xz = q.x * q.z;
float xw = q.x * q.w;
float yy = q.y * q.y;
float yz = q.y * q.z;
float yw = q.y * q.w;
float zz = q.z * q.z;
float zw = q.z * q.w;
//Bob: i may not know what a quarternion is but grouping these in parts of 4 looks nice
buf.put(1.0F - 2.0F * (yy + zz));
buf.put(2.0F * (xy + zw));
buf.put(2.0F * (xz - yw));
buf.put(0.0F);
buf.put(2.0F * (xy - zw));
buf.put(1.0F - 2.0F * (xx + zz));
buf.put(2.0F * (yz + xw));
buf.put(0.0F);
buf.put(2.0F * (xz + yw));
buf.put(2.0F * (yz - xw));
buf.put(1.0F - 2.0F * (xx + yy));
buf.put(0.0F);
buf.put(0.0F);
buf.put(0.0F);
buf.put(0.0F);
buf.put(1.0F);
buf.rewind();
return buf;
}
private void scale(FloatBuffer matrix, Vec3 scale) {
matrix.put(0, (float) (matrix.get(0) * scale.xCoord));
matrix.put(4, (float) (matrix.get(4) * scale.xCoord));
matrix.put(8, (float) (matrix.get(8) * scale.xCoord));
matrix.put(12, (float) (matrix.get(12) * scale.xCoord));
matrix.put(1, (float) (matrix.get(1) * scale.yCoord));
matrix.put(5, (float) (matrix.get(5) * scale.yCoord));
matrix.put(9, (float) (matrix.get(9) * scale.yCoord));
matrix.put(13, (float) (matrix.get(13) * scale.yCoord));
matrix.put(2, (float) (matrix.get(2) * scale.zCoord));
matrix.put(6, (float) (matrix.get(6) * scale.zCoord));
matrix.put(10, (float) (matrix.get(10) * scale.zCoord));
matrix.put(14, (float) (matrix.get(14) * scale.zCoord));
}
//Thanks, wikipedia
//God, I wish java had operator overloads. Those are one of my favorite things about c and glsl.
protected Quaternion slerp(Quaternion v0, Quaternion v1, float t) {
// Only unit quaternions are valid rotations.
// Normalize to avoid undefined behavior.
//Drillgon200: Any quaternions loaded from blender should be normalized already
//v0.normalise();
//v1.normalise();
// Compute the cosine of the angle between the two vectors.
double dot = Quaternion.dot(v0, v1);
// If the dot product is negative, slerp won't take
// the shorter path. Note that v1 and -v1 are equivalent when
// the negation is applied to all four components. Fix by
// reversing one quaternion.
if (dot < 0.0f) {
v1 = new Quaternion(-v1.x, -v1.y, -v1.z, -v1.w);
dot = -dot;
}
final double DOT_THRESHOLD = 0.9999999;
if (dot > DOT_THRESHOLD) {
// If the inputs are too close for comfort, linearly interpolate
// and normalize the result.
Quaternion result = new Quaternion(v0.x + t*v1.x,
v0.y + t*v1.y,
v0.z + t*v1.z,
v0.w + t*v1.w);
result.normalise();
return result;
}
// Since dot is in range [0, DOT_THRESHOLD], acos is safe
double theta_0 = Math.acos(dot); // theta_0 = angle between input vectors
double theta = theta_0*t; // theta = angle between v0 and result
double sin_theta = Math.sin(theta); // compute this value only once
double sin_theta_0 = Math.sin(theta_0); // compute this value only once
float s0 = (float) (Math.cos(theta) - dot * sin_theta / sin_theta_0); // == sin(theta_0 - theta) / sin(theta_0)
float s1 = (float) (sin_theta / sin_theta_0);
return new Quaternion(s0 * v0.x + s1 * v1.x,
s0 * v0.y + s1 * v1.y,
s0 * v0.z + s1 * v1.z,
s0 * v0.w + s1 * v1.w);
}
}