Hbm-s-Nuclear-Tech-GIT/src/main/java/com/hbm/explosion/ExplosionNukeRayParallelized.java
mlbv baad5cefbe feat: add RESOLUTION_FACTOR
Introduce RESOLUTION_FACTOR to scale ray density for tuning. Consider exposing this in BombConfig for runtime configuration.
2025-06-14 08:30:42 +08:00

510 lines
18 KiB
Java

package com.hbm.explosion;
import com.hbm.config.BombConfig;
import com.hbm.interfaces.IExplosionRay;
import com.hbm.main.MainRegistry;
import com.hbm.util.ConcurrentBitSet;
import com.hbm.util.SubChunkKey;
import com.hbm.util.SubChunkSnapshot;
import net.minecraft.block.Block;
import net.minecraft.init.Blocks;
import net.minecraft.util.Vec3;
import net.minecraft.world.ChunkCoordIntPair;
import net.minecraft.world.EnumSkyBlock;
import net.minecraft.world.World;
import net.minecraft.world.chunk.Chunk;
import net.minecraft.world.chunk.storage.ExtendedBlockStorage;
import org.apache.logging.log4j.Level;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.*;
import java.util.concurrent.atomic.DoubleAdder;
/**
* Threaded DDA raytracer for mk5 explosion.
*
* @author mlbv
*/
public class ExplosionNukeRayParallelized implements IExplosionRay {
private static final int WORLD_HEIGHT = 256;
private static final int BITSET_SIZE = 16 * WORLD_HEIGHT * 16;
private static final int SUBCHUNK_PER_CHUNK = WORLD_HEIGHT >> 4;
private static final float NUKE_RESISTANCE_CUTOFF = 2_000_000F;
private static final float INITIAL_ENERGY_FACTOR = 0.3F; // Scales crater, no impact on performance
private static final double RESOLUTION_FACTOR = 1.0; // Scales ray density, no impact on crater radius
protected final World world;
private final double explosionX, explosionY, explosionZ;
private final int originX, originY, originZ;
private final int strength;
private final int radius;
private final CompletableFuture<List<Vec3>> directionsFuture;
private final ConcurrentMap<ChunkCoordIntPair, ConcurrentBitSet> destructionMap;
private final ConcurrentMap<ChunkCoordIntPair, ConcurrentMap<Integer, DoubleAdder>> damageMap;
private final ConcurrentMap<SubChunkKey, SubChunkSnapshot> snapshots;
private final ConcurrentMap<SubChunkKey, ConcurrentLinkedQueue<RayTask>> waitingRoom;
private final BlockingQueue<RayTask> rayQueue;
private final ExecutorService pool;
private final CountDownLatch latch;
private final Thread latchWatcherThread;
private final List<ChunkCoordIntPair> orderedChunks;
private final BlockingQueue<SubChunkKey> highPriorityReactiveQueue; // cache queue for rays
private final Iterator<SubChunkKey> lowPriorityProactiveIterator;
private volatile List<Vec3> directions;
private volatile boolean collectFinished = false;
private volatile boolean consolidationFinished = false;
private volatile boolean destroyFinished = false;
public ExplosionNukeRayParallelized(World world, double x, double y, double z, int strength, int speed, int radius) {
this.world = world;
this.explosionX = x;
this.explosionY = y;
this.explosionZ = z;
this.originX = (int) Math.floor(x);
this.originY = (int) Math.floor(y);
this.originZ = (int) Math.floor(z);
this.strength = strength;
this.radius = radius;
int rayCount = Math.max(0, (int) (2.5 * Math.PI * strength * strength * RESOLUTION_FACTOR));
this.latch = new CountDownLatch(rayCount);
List<SubChunkKey> sortedSubChunks = getAllSubChunks();
this.lowPriorityProactiveIterator = sortedSubChunks.iterator();
this.highPriorityReactiveQueue = new LinkedBlockingQueue<>();
int initialChunkCapacity = (int) sortedSubChunks.stream().map(SubChunkKey::getPos).distinct().count();
this.destructionMap = new ConcurrentHashMap<>(initialChunkCapacity);
this.damageMap = new ConcurrentHashMap<>(initialChunkCapacity);
int subChunkCount = sortedSubChunks.size();
this.snapshots = new ConcurrentHashMap<>(subChunkCount);
this.waitingRoom = new ConcurrentHashMap<>(subChunkCount);
this.orderedChunks = new ArrayList<>();
List<RayTask> initialRayTasks = new ArrayList<>(rayCount);
for (int i = 0; i < rayCount; i++) initialRayTasks.add(new RayTask(i));
this.rayQueue = new LinkedBlockingQueue<>(initialRayTasks);
int workers = Math.max(1, Runtime.getRuntime().availableProcessors() - 1);
this.pool = Executors.newWorkStealingPool(workers);
this.directionsFuture = CompletableFuture.supplyAsync(() -> generateSphereRays(rayCount));
for (int i = 0; i < workers; i++) pool.submit(new Worker());
this.latchWatcherThread = new Thread(() -> {
try {
latch.await();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
} finally {
collectFinished = true;
if (BombConfig.explosionAlgorithm == 2) pool.submit(this::runConsolidation);
else consolidationFinished = true;
}
}, "ExplosionNuke-LatchWatcher-" + System.nanoTime());
this.latchWatcherThread.setDaemon(true);
this.latchWatcherThread.start();
}
private static float getNukeResistance(Block b) {
if (b.getMaterial().isLiquid()) return 0.1F;
if (b == Blocks.sandstone) return Blocks.stone.getExplosionResistance(null);
if (b == Blocks.obsidian) return Blocks.stone.getExplosionResistance(null) * 3.0F;
return b.getExplosionResistance(null);
}
private List<SubChunkKey> getAllSubChunks() {
List<SubChunkKey> keys = new ArrayList<>();
int cr = (radius + 15) >> 4;
int minCX = (originX >> 4) - cr;
int maxCX = (originX >> 4) + cr;
int minCZ = (originZ >> 4) - cr;
int maxCZ = (originZ >> 4) + cr;
int minSubY = Math.max(0, (originY - radius) >> 4);
int maxSubY = Math.min(SUBCHUNK_PER_CHUNK - 1, (originY + radius) >> 4);
int originSubY = originY >> 4;
for (int cx = minCX; cx <= maxCX; cx++) {
for (int cz = minCZ; cz <= maxCZ; cz++) {
for (int subY = minSubY; subY <= maxSubY; subY++) {
int chunkCenterX = (cx << 4) + 8;
int chunkCenterY = (subY << 4) + 8;
int chunkCenterZ = (cz << 4) + 8;
double dx = chunkCenterX - explosionX;
double dy = chunkCenterY - explosionY;
double dz = chunkCenterZ - explosionZ;
if (dx * dx + dy * dy + dz * dz <= (radius + 14) * (radius + 14)) { // +14 for margin of error
keys.add(new SubChunkKey(cx, cz, subY));
}
}
}
}
keys.sort(Comparator.comparingInt(key -> {
int distCX = key.getPos().chunkXPos - (originX >> 4);
int distCZ = key.getPos().chunkZPos - (originZ >> 4);
int distSubY = key.getSubY() - originSubY;
return distCX * distCX + distCZ * distCZ + distSubY * distSubY;
}));
return keys;
}
@Override
public void cacheChunksTick(int timeBudgetMs) {
if (collectFinished) return;
final long deadline = System.nanoTime() + (timeBudgetMs * 1_000_000L);
while (System.nanoTime() < deadline) {
SubChunkKey ck = highPriorityReactiveQueue.poll();
if (ck == null) break;
processCacheKey(ck);
}
while (System.nanoTime() < deadline && lowPriorityProactiveIterator.hasNext()) {
SubChunkKey ck = lowPriorityProactiveIterator.next();
processCacheKey(ck);
}
}
private void processCacheKey(SubChunkKey ck) {
if (snapshots.containsKey(ck)) return;
snapshots.put(ck, SubChunkSnapshot.getSnapshot(world, ck, BombConfig.chunkloading));
ConcurrentLinkedQueue<RayTask> waiters = waitingRoom.remove(ck);
if (waiters != null) rayQueue.addAll(waiters);
}
@Override
public void destructionTick(int timeBudgetMs) {
if (!collectFinished || !consolidationFinished || destroyFinished) return;
final long deadline = System.nanoTime() + timeBudgetMs * 1_000_000L;
if (orderedChunks.isEmpty() && !destructionMap.isEmpty()) {
orderedChunks.addAll(destructionMap.keySet());
orderedChunks.sort(Comparator.comparingInt(c -> Math.abs((originX >> 4) - c.chunkXPos) + Math.abs((originZ >> 4) - c.chunkZPos)));
}
Iterator<ChunkCoordIntPair> it = orderedChunks.iterator();
while (it.hasNext() && System.nanoTime() < deadline) {
ChunkCoordIntPair cp = it.next();
ConcurrentBitSet bs = destructionMap.get(cp);
if (bs == null) {
it.remove();
continue;
}
Chunk chunk = world.getChunkFromChunkCoords(cp.chunkXPos, cp.chunkZPos);
ExtendedBlockStorage[] storages = chunk.getBlockStorageArray();
boolean chunkModified = false;
for (int subY = 0; subY < storages.length; subY++) {
ExtendedBlockStorage storage = storages[subY];
if (storage == null) continue;
int startBit = (WORLD_HEIGHT - 1 - ((subY << 4) + 15)) << 8;
int endBit = ((WORLD_HEIGHT - 1 - (subY << 4)) << 8) | 0xFF;
int bit = bs.nextSetBit(startBit);
while (bit >= 0 && bit <= endBit && System.nanoTime() < deadline) {
int yGlobal = WORLD_HEIGHT - 1 - (bit >>> 8);
int xGlobal = (cp.chunkXPos << 4) | ((bit >>> 4) & 0xF);
int zGlobal = (cp.chunkZPos << 4) | (bit & 0xF);
int xLocal = xGlobal & 0xF;
int yLocal = yGlobal & 0xF;
int zLocal = zGlobal & 0xF;
if (storage.getBlockByExtId(xLocal, yLocal, zLocal) != Blocks.air) {
if (world.getTileEntity(xGlobal, yGlobal, zGlobal) != null) {
world.removeTileEntity(xGlobal, yGlobal, zGlobal);
}
storage.func_150818_a(xLocal, yLocal, zLocal, Blocks.air);
storage.setExtBlockMetadata(xLocal, yLocal, zLocal, 0);
chunkModified = true;
world.notifyBlocksOfNeighborChange(xGlobal, yGlobal, zGlobal, Blocks.air);
world.markBlockForUpdate(xGlobal, yGlobal, zGlobal);
world.updateLightByType(EnumSkyBlock.Sky, xGlobal, yGlobal, zGlobal);
world.updateLightByType(EnumSkyBlock.Block, xGlobal, yGlobal, zGlobal);
}
bs.clear(bit);
bit = bs.nextSetBit(bit + 1);
}
}
if (chunkModified) {
chunk.setChunkModified();
world.markBlockRangeForRenderUpdate(cp.chunkXPos << 4, 0, cp.chunkZPos << 4, (cp.chunkXPos << 4) | 15, WORLD_HEIGHT - 1, (cp.chunkZPos << 4) | 15);
}
if (bs.isEmpty()) {
destructionMap.remove(cp);
for (int subY = 0; subY < SUBCHUNK_PER_CHUNK; subY++) snapshots.remove(new SubChunkKey(cp, subY));
it.remove();
}
}
if (orderedChunks.isEmpty() && destructionMap.isEmpty()) {
destroyFinished = true;
if (pool != null) pool.shutdown();
}
}
@Override
public boolean isComplete() {
return collectFinished && consolidationFinished && destroyFinished;
}
@Override
public void cancel() {
this.collectFinished = true;
this.consolidationFinished = true;
this.destroyFinished = true;
if (this.rayQueue != null) this.rayQueue.clear();
if (this.waitingRoom != null) this.waitingRoom.clear();
if (this.latch != null) while (this.latch.getCount() > 0) this.latch.countDown();
if (this.latchWatcherThread != null && this.latchWatcherThread.isAlive()) this.latchWatcherThread.interrupt();
if (this.pool != null && !this.pool.isShutdown()) {
this.pool.shutdownNow();
try {
if (!this.pool.awaitTermination(100, TimeUnit.MILLISECONDS)) MainRegistry.logger.log(Level.ERROR, "ExplosionNukeRayParallelized thread pool did not terminate promptly on cancel.");
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
if (!this.pool.isShutdown()) this.pool.shutdownNow();
}
}
if (this.destructionMap != null) this.destructionMap.clear();
if (this.damageMap != null) this.damageMap.clear();
if (this.snapshots != null) this.snapshots.clear();
if (this.orderedChunks != null) this.orderedChunks.clear();
}
private List<Vec3> generateSphereRays(int count) {
List<Vec3> list = new ArrayList<>(count);
if (count == 0) return list;
if (count == 1) {
list.add(Vec3.createVectorHelper(1, 0, 0));
return list;
}
double phi = Math.PI * (3.0 - Math.sqrt(5.0));
for (int i = 0; i < count; i++) {
double y = 1.0 - (i / (double) (count - 1)) * 2.0;
double r = Math.sqrt(1.0 - y * y);
double t = phi * i;
list.add(Vec3.createVectorHelper(Math.cos(t) * r, y, Math.sin(t) * r));
}
return list;
}
private void runConsolidation() {
damageMap.forEach((cp, innerDamageMap) -> {
if (innerDamageMap.isEmpty()) {
damageMap.remove(cp);
return;
}
ConcurrentBitSet chunkDestructionBitSet = destructionMap.computeIfAbsent(cp, k -> new ConcurrentBitSet(BITSET_SIZE));
innerDamageMap.forEach((bitIndex, accumulatedDamageAdder) -> {
float accumulatedDamage = (float) accumulatedDamageAdder.sum();
if (accumulatedDamage <= 0.0f) {
innerDamageMap.remove(bitIndex);
return;
}
int yGlobal = WORLD_HEIGHT - 1 - (bitIndex >>> 8);
int subY = yGlobal >> 4;
if (subY < 0) {
innerDamageMap.remove(bitIndex);
return;
}
SubChunkKey snapshotKey = new SubChunkKey(cp, subY);
SubChunkSnapshot snap = snapshots.get(snapshotKey);
if (snap == null || snap == SubChunkSnapshot.EMPTY) {
innerDamageMap.remove(bitIndex);
return;
}
int xLocal = (bitIndex >>> 4) & 0xF;
int zLocal = bitIndex & 0xF;
Block originalBlock = snap.getBlock(xLocal, yGlobal & 0xF, zLocal);
if (originalBlock == Blocks.air) {
innerDamageMap.remove(bitIndex);
return;
}
float resistance = getNukeResistance(originalBlock);
if (accumulatedDamage >= resistance * RESOLUTION_FACTOR) chunkDestructionBitSet.set(bitIndex);
innerDamageMap.remove(bitIndex);
});
if (innerDamageMap.isEmpty()) damageMap.remove(cp);
});
damageMap.clear();
consolidationFinished = true;
}
private class Worker implements Runnable {
@Override
public void run() {
try {
while (!collectFinished && !Thread.currentThread().isInterrupted()) {
RayTask task = rayQueue.poll(100, TimeUnit.MILLISECONDS);
if (task != null) task.trace();
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
}
private class RayTask {
private static final double RAY_DIRECTION_EPSILON = 1e-6;
private static final double PROCESSING_EPSILON = 1e-9;
private static final float MIN_EFFECTIVE_DIST_FOR_ENERGY_CALC = 0.01f;
final int dirIndex;
double px, py, pz;
int x, y, z;
float energy;
double tMaxX, tMaxY, tMaxZ, tDeltaX, tDeltaY, tDeltaZ;
int stepX, stepY, stepZ;
boolean initialised = false;
double currentRayPosition;
private int lastCX = Integer.MIN_VALUE, lastCZ = Integer.MIN_VALUE, lastSubY = Integer.MIN_VALUE;
private SubChunkKey currentSubChunkKey = null;
RayTask(int dirIdx) {
this.dirIndex = dirIdx;
}
void init() {
if (directions == null) directions = directionsFuture.join();
Vec3 dir = directions.get(this.dirIndex);
this.energy = strength * INITIAL_ENERGY_FACTOR;
this.px = explosionX;
this.py = explosionY;
this.pz = explosionZ;
this.x = originX;
this.y = originY;
this.z = originZ;
this.currentRayPosition = 0.0;
double dirX = dir.xCoord;
double dirY = dir.yCoord;
double dirZ = dir.zCoord;
double absDirX = Math.abs(dirX);
this.stepX = (absDirX < RAY_DIRECTION_EPSILON) ? 0 : (dirX > 0 ? 1 : -1);
this.tDeltaX = (stepX == 0) ? Double.POSITIVE_INFINITY : 1.0 / absDirX;
this.tMaxX = (stepX == 0) ? Double.POSITIVE_INFINITY : ((stepX > 0 ? (this.x + 1 - this.px) : (this.px - this.x)) * this.tDeltaX);
double absDirY = Math.abs(dirY);
this.stepY = (absDirY < RAY_DIRECTION_EPSILON) ? 0 : (dirY > 0 ? 1 : -1);
this.tDeltaY = (stepY == 0) ? Double.POSITIVE_INFINITY : 1.0 / absDirY;
this.tMaxY = (stepY == 0) ? Double.POSITIVE_INFINITY : ((stepY > 0 ? (this.y + 1 - this.py) : (this.py - this.y)) * this.tDeltaY);
double absDirZ = Math.abs(dirZ);
this.stepZ = (absDirZ < RAY_DIRECTION_EPSILON) ? 0 : (dirZ > 0 ? 1 : -1);
this.tDeltaZ = (stepZ == 0) ? Double.POSITIVE_INFINITY : 1.0 / absDirZ;
this.tMaxZ = (stepZ == 0) ? Double.POSITIVE_INFINITY : ((stepZ > 0 ? (this.z + 1 - this.pz) : (this.pz - this.z)) * this.tDeltaZ);
this.initialised = true;
}
void trace() {
if (!initialised) init();
if (energy <= 0) {
latch.countDown();
return;
}
while (energy > 0) {
if (y < 0 || y >= WORLD_HEIGHT || Thread.currentThread().isInterrupted()) break;
if (currentRayPosition >= radius - PROCESSING_EPSILON) break;
int cx = x >> 4;
int cz = z >> 4;
int subY = y >> 4;
if (cx != lastCX || cz != lastCZ || subY != lastSubY) {
currentSubChunkKey = new SubChunkKey(cx, cz, subY);
lastCX = cx;
lastCZ = cz;
lastSubY = subY;
}
SubChunkSnapshot snap = snapshots.get(currentSubChunkKey);
if (snap == null) {
final boolean[] amFirst = {false};
ConcurrentLinkedQueue<RayTask> waiters = waitingRoom.computeIfAbsent(currentSubChunkKey, k -> {
amFirst[0] = true;
return new ConcurrentLinkedQueue<>();
});
if (amFirst[0]) highPriorityReactiveQueue.add(currentSubChunkKey);
waiters.add(this);
return;
}
double t_exit_voxel = Math.min(tMaxX, Math.min(tMaxY, tMaxZ));
double segmentLenInVoxel = t_exit_voxel - this.currentRayPosition;
double segmentLenForProcessing;
boolean stopAfterThisSegment = false;
if (this.currentRayPosition + segmentLenInVoxel > radius - PROCESSING_EPSILON) {
segmentLenForProcessing = Math.max(0.0, radius - this.currentRayPosition);
stopAfterThisSegment = true;
} else segmentLenForProcessing = segmentLenInVoxel;
if (snap != SubChunkSnapshot.EMPTY && segmentLenForProcessing > PROCESSING_EPSILON) {
Block block = snap.getBlock(x & 0xF, y & 0xF, z & 0xF);
if (block != Blocks.air) {
float resistance = getNukeResistance(block);
if (resistance >= NUKE_RESISTANCE_CUTOFF) {
energy = 0;
} else {
double energyLossFactor = getEnergyLossFactor(resistance);
float damageDealt = (float) (energyLossFactor * segmentLenForProcessing);
energy -= damageDealt;
if (damageDealt > 0) {
int bitIndex = ((WORLD_HEIGHT - 1 - y) << 8) | ((x & 0xF) << 4) | (z & 0xF);
ChunkCoordIntPair chunkPos = currentSubChunkKey.getPos();
if (BombConfig.explosionAlgorithm == 2) {
damageMap.computeIfAbsent(chunkPos, cp -> new ConcurrentHashMap<>(256)).computeIfAbsent(bitIndex, k -> new DoubleAdder()).add(damageDealt);
} else if (energy > 0) destructionMap.computeIfAbsent(chunkPos, posKey -> new ConcurrentBitSet(BITSET_SIZE)).set(bitIndex);
}
}
}
}
this.currentRayPosition = t_exit_voxel;
if (energy <= 0 || stopAfterThisSegment) break;
if (tMaxX < tMaxY) {
if (tMaxX < tMaxZ) {
x += stepX;
tMaxX += tDeltaX;
} else {
z += stepZ;
tMaxZ += tDeltaZ;
}
} else {
if (tMaxY < tMaxZ) {
y += stepY;
tMaxY += tDeltaY;
} else {
z += stepZ;
tMaxZ += tDeltaZ;
}
}
}
latch.countDown();
}
private double getEnergyLossFactor(float resistance) {
double effectiveDist = Math.max(this.currentRayPosition, MIN_EFFECTIVE_DIST_FOR_ENERGY_CALC);
return (Math.pow(resistance + 1.0, 3.0 * (effectiveDist / radius)) - 1.0);
}
}
}