mirror of
https://github.com/HbmMods/Hbm-s-Nuclear-Tech-GIT.git
synced 2026-01-25 10:32:49 +00:00
Introduce RESOLUTION_FACTOR to scale ray density for tuning. Consider exposing this in BombConfig for runtime configuration.
510 lines
18 KiB
Java
510 lines
18 KiB
Java
package com.hbm.explosion;
|
|
|
|
import com.hbm.config.BombConfig;
|
|
import com.hbm.interfaces.IExplosionRay;
|
|
import com.hbm.main.MainRegistry;
|
|
import com.hbm.util.ConcurrentBitSet;
|
|
import com.hbm.util.SubChunkKey;
|
|
import com.hbm.util.SubChunkSnapshot;
|
|
import net.minecraft.block.Block;
|
|
import net.minecraft.init.Blocks;
|
|
import net.minecraft.util.Vec3;
|
|
import net.minecraft.world.ChunkCoordIntPair;
|
|
import net.minecraft.world.EnumSkyBlock;
|
|
import net.minecraft.world.World;
|
|
import net.minecraft.world.chunk.Chunk;
|
|
import net.minecraft.world.chunk.storage.ExtendedBlockStorage;
|
|
import org.apache.logging.log4j.Level;
|
|
|
|
import java.util.ArrayList;
|
|
import java.util.Comparator;
|
|
import java.util.Iterator;
|
|
import java.util.List;
|
|
import java.util.concurrent.*;
|
|
import java.util.concurrent.atomic.DoubleAdder;
|
|
|
|
/**
|
|
* Threaded DDA raytracer for mk5 explosion.
|
|
*
|
|
* @author mlbv
|
|
*/
|
|
public class ExplosionNukeRayParallelized implements IExplosionRay {
|
|
|
|
private static final int WORLD_HEIGHT = 256;
|
|
private static final int BITSET_SIZE = 16 * WORLD_HEIGHT * 16;
|
|
private static final int SUBCHUNK_PER_CHUNK = WORLD_HEIGHT >> 4;
|
|
private static final float NUKE_RESISTANCE_CUTOFF = 2_000_000F;
|
|
private static final float INITIAL_ENERGY_FACTOR = 0.3F; // Scales crater, no impact on performance
|
|
private static final double RESOLUTION_FACTOR = 1.0; // Scales ray density, no impact on crater radius
|
|
|
|
protected final World world;
|
|
private final double explosionX, explosionY, explosionZ;
|
|
private final int originX, originY, originZ;
|
|
private final int strength;
|
|
private final int radius;
|
|
|
|
private final CompletableFuture<List<Vec3>> directionsFuture;
|
|
private final ConcurrentMap<ChunkCoordIntPair, ConcurrentBitSet> destructionMap;
|
|
private final ConcurrentMap<ChunkCoordIntPair, ConcurrentMap<Integer, DoubleAdder>> damageMap;
|
|
private final ConcurrentMap<SubChunkKey, SubChunkSnapshot> snapshots;
|
|
private final ConcurrentMap<SubChunkKey, ConcurrentLinkedQueue<RayTask>> waitingRoom;
|
|
private final BlockingQueue<RayTask> rayQueue;
|
|
private final ExecutorService pool;
|
|
private final CountDownLatch latch;
|
|
private final Thread latchWatcherThread;
|
|
private final List<ChunkCoordIntPair> orderedChunks;
|
|
private final BlockingQueue<SubChunkKey> highPriorityReactiveQueue; // cache queue for rays
|
|
private final Iterator<SubChunkKey> lowPriorityProactiveIterator;
|
|
private volatile List<Vec3> directions;
|
|
private volatile boolean collectFinished = false;
|
|
private volatile boolean consolidationFinished = false;
|
|
private volatile boolean destroyFinished = false;
|
|
|
|
public ExplosionNukeRayParallelized(World world, double x, double y, double z, int strength, int speed, int radius) {
|
|
this.world = world;
|
|
this.explosionX = x;
|
|
this.explosionY = y;
|
|
this.explosionZ = z;
|
|
|
|
this.originX = (int) Math.floor(x);
|
|
this.originY = (int) Math.floor(y);
|
|
this.originZ = (int) Math.floor(z);
|
|
|
|
this.strength = strength;
|
|
this.radius = radius;
|
|
|
|
int rayCount = Math.max(0, (int) (2.5 * Math.PI * strength * strength * RESOLUTION_FACTOR));
|
|
this.latch = new CountDownLatch(rayCount);
|
|
List<SubChunkKey> sortedSubChunks = getAllSubChunks();
|
|
this.lowPriorityProactiveIterator = sortedSubChunks.iterator();
|
|
this.highPriorityReactiveQueue = new LinkedBlockingQueue<>();
|
|
|
|
int initialChunkCapacity = (int) sortedSubChunks.stream().map(SubChunkKey::getPos).distinct().count();
|
|
|
|
this.destructionMap = new ConcurrentHashMap<>(initialChunkCapacity);
|
|
this.damageMap = new ConcurrentHashMap<>(initialChunkCapacity);
|
|
|
|
int subChunkCount = sortedSubChunks.size();
|
|
this.snapshots = new ConcurrentHashMap<>(subChunkCount);
|
|
this.waitingRoom = new ConcurrentHashMap<>(subChunkCount);
|
|
this.orderedChunks = new ArrayList<>();
|
|
|
|
List<RayTask> initialRayTasks = new ArrayList<>(rayCount);
|
|
for (int i = 0; i < rayCount; i++) initialRayTasks.add(new RayTask(i));
|
|
this.rayQueue = new LinkedBlockingQueue<>(initialRayTasks);
|
|
|
|
int workers = Math.max(1, Runtime.getRuntime().availableProcessors() - 1);
|
|
this.pool = Executors.newWorkStealingPool(workers);
|
|
this.directionsFuture = CompletableFuture.supplyAsync(() -> generateSphereRays(rayCount));
|
|
|
|
for (int i = 0; i < workers; i++) pool.submit(new Worker());
|
|
|
|
this.latchWatcherThread = new Thread(() -> {
|
|
try {
|
|
latch.await();
|
|
} catch (InterruptedException e) {
|
|
Thread.currentThread().interrupt();
|
|
} finally {
|
|
collectFinished = true;
|
|
if (BombConfig.explosionAlgorithm == 2) pool.submit(this::runConsolidation);
|
|
else consolidationFinished = true;
|
|
}
|
|
}, "ExplosionNuke-LatchWatcher-" + System.nanoTime());
|
|
this.latchWatcherThread.setDaemon(true);
|
|
this.latchWatcherThread.start();
|
|
}
|
|
|
|
private static float getNukeResistance(Block b) {
|
|
if (b.getMaterial().isLiquid()) return 0.1F;
|
|
if (b == Blocks.sandstone) return Blocks.stone.getExplosionResistance(null);
|
|
if (b == Blocks.obsidian) return Blocks.stone.getExplosionResistance(null) * 3.0F;
|
|
return b.getExplosionResistance(null);
|
|
}
|
|
|
|
private List<SubChunkKey> getAllSubChunks() {
|
|
List<SubChunkKey> keys = new ArrayList<>();
|
|
int cr = (radius + 15) >> 4;
|
|
int minCX = (originX >> 4) - cr;
|
|
int maxCX = (originX >> 4) + cr;
|
|
int minCZ = (originZ >> 4) - cr;
|
|
int maxCZ = (originZ >> 4) + cr;
|
|
int minSubY = Math.max(0, (originY - radius) >> 4);
|
|
int maxSubY = Math.min(SUBCHUNK_PER_CHUNK - 1, (originY + radius) >> 4);
|
|
int originSubY = originY >> 4;
|
|
|
|
for (int cx = minCX; cx <= maxCX; cx++) {
|
|
for (int cz = minCZ; cz <= maxCZ; cz++) {
|
|
for (int subY = minSubY; subY <= maxSubY; subY++) {
|
|
int chunkCenterX = (cx << 4) + 8;
|
|
int chunkCenterY = (subY << 4) + 8;
|
|
int chunkCenterZ = (cz << 4) + 8;
|
|
double dx = chunkCenterX - explosionX;
|
|
double dy = chunkCenterY - explosionY;
|
|
double dz = chunkCenterZ - explosionZ;
|
|
if (dx * dx + dy * dy + dz * dz <= (radius + 14) * (radius + 14)) { // +14 for margin of error
|
|
keys.add(new SubChunkKey(cx, cz, subY));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
keys.sort(Comparator.comparingInt(key -> {
|
|
int distCX = key.getPos().chunkXPos - (originX >> 4);
|
|
int distCZ = key.getPos().chunkZPos - (originZ >> 4);
|
|
int distSubY = key.getSubY() - originSubY;
|
|
return distCX * distCX + distCZ * distCZ + distSubY * distSubY;
|
|
}));
|
|
return keys;
|
|
}
|
|
|
|
@Override
|
|
public void cacheChunksTick(int timeBudgetMs) {
|
|
if (collectFinished) return;
|
|
final long deadline = System.nanoTime() + (timeBudgetMs * 1_000_000L);
|
|
while (System.nanoTime() < deadline) {
|
|
SubChunkKey ck = highPriorityReactiveQueue.poll();
|
|
if (ck == null) break;
|
|
processCacheKey(ck);
|
|
}
|
|
while (System.nanoTime() < deadline && lowPriorityProactiveIterator.hasNext()) {
|
|
SubChunkKey ck = lowPriorityProactiveIterator.next();
|
|
processCacheKey(ck);
|
|
}
|
|
}
|
|
|
|
private void processCacheKey(SubChunkKey ck) {
|
|
if (snapshots.containsKey(ck)) return;
|
|
snapshots.put(ck, SubChunkSnapshot.getSnapshot(world, ck, BombConfig.chunkloading));
|
|
ConcurrentLinkedQueue<RayTask> waiters = waitingRoom.remove(ck);
|
|
if (waiters != null) rayQueue.addAll(waiters);
|
|
}
|
|
|
|
@Override
|
|
public void destructionTick(int timeBudgetMs) {
|
|
if (!collectFinished || !consolidationFinished || destroyFinished) return;
|
|
|
|
final long deadline = System.nanoTime() + timeBudgetMs * 1_000_000L;
|
|
|
|
if (orderedChunks.isEmpty() && !destructionMap.isEmpty()) {
|
|
orderedChunks.addAll(destructionMap.keySet());
|
|
orderedChunks.sort(Comparator.comparingInt(c -> Math.abs((originX >> 4) - c.chunkXPos) + Math.abs((originZ >> 4) - c.chunkZPos)));
|
|
}
|
|
|
|
Iterator<ChunkCoordIntPair> it = orderedChunks.iterator();
|
|
while (it.hasNext() && System.nanoTime() < deadline) {
|
|
ChunkCoordIntPair cp = it.next();
|
|
ConcurrentBitSet bs = destructionMap.get(cp);
|
|
if (bs == null) {
|
|
it.remove();
|
|
continue;
|
|
}
|
|
|
|
Chunk chunk = world.getChunkFromChunkCoords(cp.chunkXPos, cp.chunkZPos);
|
|
ExtendedBlockStorage[] storages = chunk.getBlockStorageArray();
|
|
boolean chunkModified = false;
|
|
|
|
for (int subY = 0; subY < storages.length; subY++) {
|
|
ExtendedBlockStorage storage = storages[subY];
|
|
if (storage == null) continue;
|
|
|
|
int startBit = (WORLD_HEIGHT - 1 - ((subY << 4) + 15)) << 8;
|
|
int endBit = ((WORLD_HEIGHT - 1 - (subY << 4)) << 8) | 0xFF;
|
|
|
|
int bit = bs.nextSetBit(startBit);
|
|
|
|
while (bit >= 0 && bit <= endBit && System.nanoTime() < deadline) {
|
|
int yGlobal = WORLD_HEIGHT - 1 - (bit >>> 8);
|
|
int xGlobal = (cp.chunkXPos << 4) | ((bit >>> 4) & 0xF);
|
|
int zGlobal = (cp.chunkZPos << 4) | (bit & 0xF);
|
|
int xLocal = xGlobal & 0xF;
|
|
int yLocal = yGlobal & 0xF;
|
|
int zLocal = zGlobal & 0xF;
|
|
if (storage.getBlockByExtId(xLocal, yLocal, zLocal) != Blocks.air) {
|
|
if (world.getTileEntity(xGlobal, yGlobal, zGlobal) != null) {
|
|
world.removeTileEntity(xGlobal, yGlobal, zGlobal);
|
|
}
|
|
|
|
storage.func_150818_a(xLocal, yLocal, zLocal, Blocks.air);
|
|
storage.setExtBlockMetadata(xLocal, yLocal, zLocal, 0);
|
|
chunkModified = true;
|
|
|
|
world.notifyBlocksOfNeighborChange(xGlobal, yGlobal, zGlobal, Blocks.air);
|
|
world.markBlockForUpdate(xGlobal, yGlobal, zGlobal);
|
|
|
|
world.updateLightByType(EnumSkyBlock.Sky, xGlobal, yGlobal, zGlobal);
|
|
world.updateLightByType(EnumSkyBlock.Block, xGlobal, yGlobal, zGlobal);
|
|
}
|
|
bs.clear(bit);
|
|
bit = bs.nextSetBit(bit + 1);
|
|
}
|
|
}
|
|
|
|
if (chunkModified) {
|
|
chunk.setChunkModified();
|
|
world.markBlockRangeForRenderUpdate(cp.chunkXPos << 4, 0, cp.chunkZPos << 4, (cp.chunkXPos << 4) | 15, WORLD_HEIGHT - 1, (cp.chunkZPos << 4) | 15);
|
|
}
|
|
if (bs.isEmpty()) {
|
|
destructionMap.remove(cp);
|
|
for (int subY = 0; subY < SUBCHUNK_PER_CHUNK; subY++) snapshots.remove(new SubChunkKey(cp, subY));
|
|
it.remove();
|
|
}
|
|
}
|
|
|
|
if (orderedChunks.isEmpty() && destructionMap.isEmpty()) {
|
|
destroyFinished = true;
|
|
if (pool != null) pool.shutdown();
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public boolean isComplete() {
|
|
return collectFinished && consolidationFinished && destroyFinished;
|
|
}
|
|
|
|
@Override
|
|
public void cancel() {
|
|
this.collectFinished = true;
|
|
this.consolidationFinished = true;
|
|
this.destroyFinished = true;
|
|
|
|
if (this.rayQueue != null) this.rayQueue.clear();
|
|
if (this.waitingRoom != null) this.waitingRoom.clear();
|
|
|
|
if (this.latch != null) while (this.latch.getCount() > 0) this.latch.countDown();
|
|
if (this.latchWatcherThread != null && this.latchWatcherThread.isAlive()) this.latchWatcherThread.interrupt();
|
|
|
|
if (this.pool != null && !this.pool.isShutdown()) {
|
|
this.pool.shutdownNow();
|
|
try {
|
|
if (!this.pool.awaitTermination(100, TimeUnit.MILLISECONDS)) MainRegistry.logger.log(Level.ERROR, "ExplosionNukeRayParallelized thread pool did not terminate promptly on cancel.");
|
|
} catch (InterruptedException e) {
|
|
Thread.currentThread().interrupt();
|
|
if (!this.pool.isShutdown()) this.pool.shutdownNow();
|
|
}
|
|
}
|
|
if (this.destructionMap != null) this.destructionMap.clear();
|
|
if (this.damageMap != null) this.damageMap.clear();
|
|
if (this.snapshots != null) this.snapshots.clear();
|
|
if (this.orderedChunks != null) this.orderedChunks.clear();
|
|
}
|
|
|
|
private List<Vec3> generateSphereRays(int count) {
|
|
List<Vec3> list = new ArrayList<>(count);
|
|
if (count == 0) return list;
|
|
if (count == 1) {
|
|
list.add(Vec3.createVectorHelper(1, 0, 0));
|
|
return list;
|
|
}
|
|
double phi = Math.PI * (3.0 - Math.sqrt(5.0));
|
|
for (int i = 0; i < count; i++) {
|
|
double y = 1.0 - (i / (double) (count - 1)) * 2.0;
|
|
double r = Math.sqrt(1.0 - y * y);
|
|
double t = phi * i;
|
|
list.add(Vec3.createVectorHelper(Math.cos(t) * r, y, Math.sin(t) * r));
|
|
}
|
|
return list;
|
|
}
|
|
|
|
private void runConsolidation() {
|
|
damageMap.forEach((cp, innerDamageMap) -> {
|
|
if (innerDamageMap.isEmpty()) {
|
|
damageMap.remove(cp);
|
|
return;
|
|
}
|
|
ConcurrentBitSet chunkDestructionBitSet = destructionMap.computeIfAbsent(cp, k -> new ConcurrentBitSet(BITSET_SIZE));
|
|
innerDamageMap.forEach((bitIndex, accumulatedDamageAdder) -> {
|
|
float accumulatedDamage = (float) accumulatedDamageAdder.sum();
|
|
if (accumulatedDamage <= 0.0f) {
|
|
innerDamageMap.remove(bitIndex);
|
|
return;
|
|
}
|
|
int yGlobal = WORLD_HEIGHT - 1 - (bitIndex >>> 8);
|
|
int subY = yGlobal >> 4;
|
|
if (subY < 0) {
|
|
innerDamageMap.remove(bitIndex);
|
|
return;
|
|
}
|
|
SubChunkKey snapshotKey = new SubChunkKey(cp, subY);
|
|
SubChunkSnapshot snap = snapshots.get(snapshotKey);
|
|
if (snap == null || snap == SubChunkSnapshot.EMPTY) {
|
|
innerDamageMap.remove(bitIndex);
|
|
return;
|
|
}
|
|
int xLocal = (bitIndex >>> 4) & 0xF;
|
|
int zLocal = bitIndex & 0xF;
|
|
Block originalBlock = snap.getBlock(xLocal, yGlobal & 0xF, zLocal);
|
|
if (originalBlock == Blocks.air) {
|
|
innerDamageMap.remove(bitIndex);
|
|
return;
|
|
}
|
|
float resistance = getNukeResistance(originalBlock);
|
|
if (accumulatedDamage >= resistance * RESOLUTION_FACTOR) chunkDestructionBitSet.set(bitIndex);
|
|
innerDamageMap.remove(bitIndex);
|
|
});
|
|
if (innerDamageMap.isEmpty()) damageMap.remove(cp);
|
|
});
|
|
damageMap.clear();
|
|
consolidationFinished = true;
|
|
}
|
|
|
|
private class Worker implements Runnable {
|
|
@Override
|
|
public void run() {
|
|
try {
|
|
while (!collectFinished && !Thread.currentThread().isInterrupted()) {
|
|
RayTask task = rayQueue.poll(100, TimeUnit.MILLISECONDS);
|
|
if (task != null) task.trace();
|
|
}
|
|
} catch (InterruptedException e) {
|
|
Thread.currentThread().interrupt();
|
|
}
|
|
}
|
|
}
|
|
|
|
private class RayTask {
|
|
private static final double RAY_DIRECTION_EPSILON = 1e-6;
|
|
private static final double PROCESSING_EPSILON = 1e-9;
|
|
private static final float MIN_EFFECTIVE_DIST_FOR_ENERGY_CALC = 0.01f;
|
|
|
|
final int dirIndex;
|
|
double px, py, pz;
|
|
int x, y, z;
|
|
float energy;
|
|
double tMaxX, tMaxY, tMaxZ, tDeltaX, tDeltaY, tDeltaZ;
|
|
int stepX, stepY, stepZ;
|
|
boolean initialised = false;
|
|
double currentRayPosition;
|
|
|
|
private int lastCX = Integer.MIN_VALUE, lastCZ = Integer.MIN_VALUE, lastSubY = Integer.MIN_VALUE;
|
|
private SubChunkKey currentSubChunkKey = null;
|
|
|
|
RayTask(int dirIdx) {
|
|
this.dirIndex = dirIdx;
|
|
}
|
|
|
|
void init() {
|
|
if (directions == null) directions = directionsFuture.join();
|
|
Vec3 dir = directions.get(this.dirIndex);
|
|
this.energy = strength * INITIAL_ENERGY_FACTOR;
|
|
this.px = explosionX;
|
|
this.py = explosionY;
|
|
this.pz = explosionZ;
|
|
this.x = originX;
|
|
this.y = originY;
|
|
this.z = originZ;
|
|
this.currentRayPosition = 0.0;
|
|
|
|
double dirX = dir.xCoord;
|
|
double dirY = dir.yCoord;
|
|
double dirZ = dir.zCoord;
|
|
|
|
double absDirX = Math.abs(dirX);
|
|
this.stepX = (absDirX < RAY_DIRECTION_EPSILON) ? 0 : (dirX > 0 ? 1 : -1);
|
|
this.tDeltaX = (stepX == 0) ? Double.POSITIVE_INFINITY : 1.0 / absDirX;
|
|
this.tMaxX = (stepX == 0) ? Double.POSITIVE_INFINITY : ((stepX > 0 ? (this.x + 1 - this.px) : (this.px - this.x)) * this.tDeltaX);
|
|
|
|
double absDirY = Math.abs(dirY);
|
|
this.stepY = (absDirY < RAY_DIRECTION_EPSILON) ? 0 : (dirY > 0 ? 1 : -1);
|
|
this.tDeltaY = (stepY == 0) ? Double.POSITIVE_INFINITY : 1.0 / absDirY;
|
|
this.tMaxY = (stepY == 0) ? Double.POSITIVE_INFINITY : ((stepY > 0 ? (this.y + 1 - this.py) : (this.py - this.y)) * this.tDeltaY);
|
|
|
|
double absDirZ = Math.abs(dirZ);
|
|
this.stepZ = (absDirZ < RAY_DIRECTION_EPSILON) ? 0 : (dirZ > 0 ? 1 : -1);
|
|
this.tDeltaZ = (stepZ == 0) ? Double.POSITIVE_INFINITY : 1.0 / absDirZ;
|
|
this.tMaxZ = (stepZ == 0) ? Double.POSITIVE_INFINITY : ((stepZ > 0 ? (this.z + 1 - this.pz) : (this.pz - this.z)) * this.tDeltaZ);
|
|
|
|
this.initialised = true;
|
|
}
|
|
|
|
void trace() {
|
|
if (!initialised) init();
|
|
if (energy <= 0) {
|
|
latch.countDown();
|
|
return;
|
|
}
|
|
|
|
while (energy > 0) {
|
|
if (y < 0 || y >= WORLD_HEIGHT || Thread.currentThread().isInterrupted()) break;
|
|
if (currentRayPosition >= radius - PROCESSING_EPSILON) break;
|
|
|
|
int cx = x >> 4;
|
|
int cz = z >> 4;
|
|
int subY = y >> 4;
|
|
if (cx != lastCX || cz != lastCZ || subY != lastSubY) {
|
|
currentSubChunkKey = new SubChunkKey(cx, cz, subY);
|
|
lastCX = cx;
|
|
lastCZ = cz;
|
|
lastSubY = subY;
|
|
}
|
|
|
|
SubChunkSnapshot snap = snapshots.get(currentSubChunkKey);
|
|
if (snap == null) {
|
|
final boolean[] amFirst = {false};
|
|
ConcurrentLinkedQueue<RayTask> waiters = waitingRoom.computeIfAbsent(currentSubChunkKey, k -> {
|
|
amFirst[0] = true;
|
|
return new ConcurrentLinkedQueue<>();
|
|
});
|
|
if (amFirst[0]) highPriorityReactiveQueue.add(currentSubChunkKey);
|
|
waiters.add(this);
|
|
return;
|
|
}
|
|
double t_exit_voxel = Math.min(tMaxX, Math.min(tMaxY, tMaxZ));
|
|
double segmentLenInVoxel = t_exit_voxel - this.currentRayPosition;
|
|
double segmentLenForProcessing;
|
|
boolean stopAfterThisSegment = false;
|
|
|
|
if (this.currentRayPosition + segmentLenInVoxel > radius - PROCESSING_EPSILON) {
|
|
segmentLenForProcessing = Math.max(0.0, radius - this.currentRayPosition);
|
|
stopAfterThisSegment = true;
|
|
} else segmentLenForProcessing = segmentLenInVoxel;
|
|
|
|
if (snap != SubChunkSnapshot.EMPTY && segmentLenForProcessing > PROCESSING_EPSILON) {
|
|
Block block = snap.getBlock(x & 0xF, y & 0xF, z & 0xF);
|
|
if (block != Blocks.air) {
|
|
float resistance = getNukeResistance(block);
|
|
if (resistance >= NUKE_RESISTANCE_CUTOFF) {
|
|
energy = 0;
|
|
} else {
|
|
double energyLossFactor = getEnergyLossFactor(resistance);
|
|
float damageDealt = (float) (energyLossFactor * segmentLenForProcessing);
|
|
energy -= damageDealt;
|
|
if (damageDealt > 0) {
|
|
int bitIndex = ((WORLD_HEIGHT - 1 - y) << 8) | ((x & 0xF) << 4) | (z & 0xF);
|
|
ChunkCoordIntPair chunkPos = currentSubChunkKey.getPos();
|
|
if (BombConfig.explosionAlgorithm == 2) {
|
|
damageMap.computeIfAbsent(chunkPos, cp -> new ConcurrentHashMap<>(256)).computeIfAbsent(bitIndex, k -> new DoubleAdder()).add(damageDealt);
|
|
} else if (energy > 0) destructionMap.computeIfAbsent(chunkPos, posKey -> new ConcurrentBitSet(BITSET_SIZE)).set(bitIndex);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
this.currentRayPosition = t_exit_voxel;
|
|
if (energy <= 0 || stopAfterThisSegment) break;
|
|
|
|
if (tMaxX < tMaxY) {
|
|
if (tMaxX < tMaxZ) {
|
|
x += stepX;
|
|
tMaxX += tDeltaX;
|
|
} else {
|
|
z += stepZ;
|
|
tMaxZ += tDeltaZ;
|
|
}
|
|
} else {
|
|
if (tMaxY < tMaxZ) {
|
|
y += stepY;
|
|
tMaxY += tDeltaY;
|
|
} else {
|
|
z += stepZ;
|
|
tMaxZ += tDeltaZ;
|
|
}
|
|
}
|
|
}
|
|
latch.countDown();
|
|
}
|
|
|
|
private double getEnergyLossFactor(float resistance) {
|
|
double effectiveDist = Math.max(this.currentRayPosition, MIN_EFFECTIVE_DIST_FOR_ENERGY_CALC);
|
|
return (Math.pow(resistance + 1.0, 3.0 * (effectiveDist / radius)) - 1.0);
|
|
}
|
|
}
|
|
}
|